Effects of RMP-induced changes of radial electric fields on microturbulence in DIII-D pedestal top

S. Taimourzadeh¹, L. Shi¹, Z. Lin¹, R. Nazikian², I. Holod¹,³ and D. Spong⁴

¹ Department of Physics and Astronomy, University of California, Irvine, CA 92697, United States of America
² Princeton Plasma Physics Laboratory, Princeton, NJ 08543, United States of America
³ Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
⁴ Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America

E-mail: zhihongl@uci.edu

Received 2 September 2018, revised 22 December 2018
Accepted for publication 14 January 2019
Published 5 February 2019

Abstract
Gyrokinetic simulations of DIII-D tokamak with axisymmetric equilibrium show that the reduction in the radial electric field shear at the top of the pedestal during edge localized mode (ELM) suppression with the \(n = 2 \) resonant magnetic perturbations (RMPs) leads to enhanced drift-wave turbulence and extended turbulence spreading to the top of the pedestal relative to ELMing plasmas with similar RMP and pedestal parameters. The simulated turbulent transport at the top of the pedestal in ELM suppressed conditions is consistent with experimental observations of enhanced turbulence at the top of the pedestal during ELM suppression by the RMPs. These results imply that enhanced drift-wave turbulence due to reduced \(E \times B \) shear at the pedestal top can contribute to the additional transport required to prevent the pedestal growing to a width that is unstable to ELMs.

Keywords: RMP turbulence, \(E \times B \) shear, edge localized modes, resonant magnetic perturbations, DIII-D, gyrokinetic simulations, plasma

(Some figures may appear in colour only in the online journal)

1. Introduction

In order to achieve the required confinement for producing significant fusion gain, the high confinement mode (H-mode) is the selected mode of operation in the International Thermonuclear Experimental Reactor (ITER). However, along with the H-mode come edge localized modes (ELMs), or intermittent magnetohydrodynamic (MHD) bursts, that can produce substantial pulses of thermal energy from the plasma edge to the plasma facing components. While ELMs are benign in present day experiments, extrapolations to reactor scale (such as ITER) predict ELM energy fluxes of up to 20 MJ in fractions of a millisecond [1], which can drastically decrease divertor lifetimes, generate impurities, and erode first wall components. Resonant magnetic perturbations (RMPs) have been shown to mitigate and/or suppress ELMs in DIII-D [2–4] and in many other fusion experiments [5–8]. A leading hypothesis is that ELM stabilization by RMPs is achieved by significantly increasing the edge plasma transport, preventing the pedestal from reaching the Peeling–Ballooning-Mode (PBM) stability boundary [4, 9].

The observation of spontaneous transitions between ELMing and ELM suppressed conditions with static \(n = 2 \) RMPs reveals that ELM suppression is achieved or lost via a bifurcation in magnetic fields near the inner wall, pedestal impurity toroidal rotation velocity and density fluctuations [10]. Another study using modulated \(n = 3 \) RMPs in an ELM suppressed state revealed a prompt increase in ion-scale density fluctuations with the increase in the RMP level, indicative of a direct effect of the RMP on turbulence at the pedestal top [3]. Still other studies have revealed increased density fluctuations at intermediate scales at the pedestal top in the transition
RMP reveals no significant increase in the top of pedestal suppression. A recent study of ELM suppression with $3 n = 2 RMP$ is the cause of the turbulence increase in all cases of RMP ELM pedestal top \([12]\). Another study using modulated $n = 2 RMP$ in an ELM shear in the transition to ELM suppression (see figure 13 in \[13, 14\]), it has been demonstrated that the effect of the ideal MHD component of the plasma (kink) response to the RMP has a negligible effect on the linear growth rate of microturbulence and zonal flows at the top of the pedestal, in DIII-D ITER similar shape plasmas for experimentally relevant values of the RMP, $(\delta B / B \approx 5 \times 10^{-4})$ \[15\]. This work suggests that the main nonresonant effect of the RMP on transport is through the neoclassical ambipolar potential or the neoclassical toroidal viscosity (NTV) \[16\], which can result in changes to the radial electric field (E_r) and its shear.

The effect of magnetic stochasticity on edge transport due to magnetic island overlap has also been explored. However, it is clear from detailed profile measurements on DIII-D that the presence of stochasticity is incommensurate with the inferred electron thermal transport at the top of the pedestal \[17\]. Therefore, any magnetic resonant mechanism that purports to account for enhanced thermal transport at the top of the pedestal must be a property of isolated non-overlapping magnetic islands. Regardless of the dominant mechanism behind the change in the radial electric field, we need to explore how this change can affect thermal and particle transport in the case where there are good (confining) magnetic surfaces between isolated (small) magnetic islands.

In this paper, we show that there is a plausible mechanism to account for the increase in ion-scale turbulence and transport at the top of the pedestal during RMP induced ELM suppression, resulting from the modification of the E_r profile due to $n = 2 RMP$ in the DIII-D tokamak. The mechanism involves a flattening of the E_r profile at the pedestal top, thereby significantly reducing the local $E \times B$ shear rate. Indeed, figure 3(c) in \[10\] shows a strong flattening of the E_r profile (and hence reduction of the $E \times B$ shear) at the pedestal top ($\rho \approx 0.92$) in the transition to ELM suppression. However, we cannot claim that the reduction of $E \times B$ shear is the cause of the turbulence increase in all cases of RMP ELM suppression. A recent study of ELM suppression with $n = 3 RMP$ reveals no significant increase in the top of pedestal ion scale fluctuations, nor a significant decrease in the $E \times B$ shear in the transition to ELM suppression (see figure 13 in \[12\]). Another study using modulated $n = 3 RMP$s in an ELM suppressed state indicated that an increase in ion-scale turbulence with increasing RMP level before an observable change in the $E \times B$ shear \[3\]. We also note that an increase in fluctuations at intermediate scales ($k_{\rho_s} > 2$) is seen during $n = 2$ and $n = 3$ ELM suppression \[11, 12\]. These various studies performed under different plasma conditions and with different RMP fields yield a somewhat confusing array of results. These results indicate that a comprehensive assessment of the conditions in ELM suppression over a wide range of conditions is needed.

A comprehensive assessment of prompt fluctuation and $E \times B$ shear changes in the transition to ELM suppression is beyond the scope of this paper. Therefore, we only confine our present study to the analysis of $n = 2 RMP$ ELM suppressed plasmas in the ITER similar shape on DIII-D with static $n = 2 RMP$s, where a concomitant reduction in the $E \times B$ shear is seen with the increase in the turbulent fluctuations at the pedestal top in the transition to ELM suppression.

It is well known that the reduction of $E \times B$ shear can have a direct effect on driftwave turbulence and transport \[18\]. Using GTC simulations, we show that the reduction of the $E \times B$ shear near the pedestal top has a direct effect, in axisymmetric geometry, on driftwave turbulence and transport in DIII-D shot 158103 with $n = 2 RMP$s \[10\]. Specifically, our simulations find that the weaker $E \times B$ shearing rate in the ELM suppressed state allows ITG-like turbulence in the DIII-D plasma outer edge to nonlinearly spread \[19\] to the pedestal top. This spreading leads to a broader region of microturbulence and larger calculated turbulent transport at the pedestal top. The increase in driftwave turbulence is not present in two corresponding ELMing cases, namely, shots 158103 at 3750 ms (ELMing with the same $n = 2 RMP$) and 158104 at 1350 ms (ELMing without RMP). All simulations reported in this paper are electrostatic, since the kinetic ballooning mode was found to be marginally stable in the DIII-D pedestal top, while electrostatic ion temperature gradient (ITG) types of instabilities are strongly unstable \[20–22\]. Our result demonstrates a plausible mechanism for the observed increase in pedestal top turbulence and transport, driven by $n = 2 RMP$s through reduced $E \times B$ shear. However, we note that this work does not address the mechanism by which the RMP modifies the $E \times B$ shear. This goal of this study is to examine the effects of changes in axisymmetric profiles on turbulence and transport in the DIII-D tokamak pedestal top, for $n = 2 RMP$ experiments in ITER-like plasmas.

The rest of this paper is structured as follows. In section 2, we extend the fluid kinetic electron hybrid model \[23\] to simulate the electron response with an equilibrium radial electric field. The new model is verified, in simple geometry, in section 3. In section 4, we apply our model on three DIII-D test cases, two of which are ELMing, one with and the other without $n = 2 RMP$ and the third is an $n = 2 RMP$ ELM suppressed case. We find that the reduced equilibrium $E \times B$ shear rate in the $n = 2 RMP$ ELM suppressed case leads to enhanced microturbulence and transport at the pedestal top, consistent with experimental observations of increased ion-scale fluctuations at the pedestal top \[10\].
2. Simulation model

In GTC, ions (and electrons) are simulated [24] by integrating the gyrokinetic (drift/kinetic) equation along gyrocenter trajectories, and the effects of an equilibrium radial electric field enter via the equations of motion. However, electrons are simulated in this work via the fluid-kinetic hybrid model [23], for which an extension to incorporate an equilibrium radial electric field is presented here. No modification to the ion model is needed, as ions use the δf method [25], which evolves the perturbed ion distribution by integrating the perturbed part of the gyrokinetic equation operator operating on the equilibrium ion distribution.

2.1. Gyrokinetic equations in toroidal geometry

In the electrostatic and collisionless limit, the gyrokinetic equation [25, 26] for toroidal plasmas in five dimensional phase space with gyrocenter position \(\mathbf{X} \), magnetic moment \(\mu \), and parallel velocity \(v || \) is,

\[
L f_{\alpha}(\mathbf{X}, \mu, v || , t) \equiv \left[\frac{\partial}{\partial t} + (v || \mathbf{b} \cdot \mathbf{v} || + v_d + v_E) \cdot \nabla - \mathbf{b} \cdot (\mu \nabla \phi + Z_\alpha \nabla \phi) \frac{\partial}{m_\alpha \partial v ||} \right] f_\alpha = 0,
\]

(1)

where,

\[
v_E = \frac{c \mathbf{b}_0 \times \nabla \phi}{B_0},
\]

\[
v_d = \frac{\mu}{m_\alpha \Omega_\alpha} \mathbf{b}_0 \times \nabla B_0 + \frac{v^2 ||}{\Omega_\alpha} \nabla \times \mathbf{b}_0,
\]

\[
\mathbf{b}_0 = \mathbf{b}_0 + \frac{v^2 ||}{\Omega_\alpha} \nabla \times \mathbf{b}_0,
\]

\[
\Omega_\alpha = \frac{Z_\alpha B_0}{m_\alpha c}.
\]

(2)

\(\alpha \) represents the particle species, and \(m_\alpha, Z_\alpha, \) and \(\mathbf{B}_0 = B_0 \mathbf{b}_0 \) are the particle mass, particle charge, and equilibrium magnetic field, respectively. Also, the perturbed gyroaveraged electrostatic potential, \(\phi = \delta \phi + \phi_{ZF} \), is separated into nonzonal and zonal components. Now, the operator \(L \) can be separated into equilibrium, nonzonal, and zonal parts. Specifically,

\[
L = L_0 + \delta L + L_{ZF}
\]

(3)

where,

\[
L_0 = \frac{\partial}{\partial t} + (v || \mathbf{b} \cdot \mathbf{v} || + v_d + v_E) \cdot \nabla - \mathbf{b} \cdot \mu \nabla B_0 \frac{\partial}{m_\alpha \partial v ||},
\]

\[
\delta L = \delta v_E \cdot \nabla - \mathbf{b} \cdot Z_\alpha \nabla \phi \frac{\partial}{m_\alpha \partial v ||},
\]

\[
L_{ZF} = \frac{c \mathbf{b}_0 \times \nabla \phi_{ZF}}{B_0} \cdot \nabla - \frac{v^2 ||}{\Omega_\alpha} \nabla \times \mathbf{b}_0 \cdot Z_\alpha \nabla \phi_{ZF} \frac{\partial}{m_\alpha \partial v ||},
\]

and, \(\delta v_E = \frac{c \mathbf{b}_0 \times \nabla \phi}{B_0} \).

(4)

2.2. Electron kinetic response

The electron response is separated into equilibrium and perturbed parts, \(f_e = f_{e0} + \delta f_e \), with,

\[
L_0 f_{e0} = 0,
\]

(5)

defining the equilibrium distribution, the neoclassical solution. After substituting for \(f_{e0} \), we can rewrite equation (1) as,

\[
L \delta f_e = -L f_{e0} = -(\delta L + L_{ZF}) f_{e0}.
\]

(6)

where, for simplicity, we approximate the source with a local Maxwellian, i.e. \(f_{e0} \approx \frac{n_e}{(2 \pi m_e k_B T_e)^{3/2}} \exp[-(2 \mu B_0 + m_e v_E^2) / 2 T_e] \).

The fluid-kinetic hybrid model will further take the perturbed part of the distribution and split it into a larger adiabatic part, \(\delta f_e^{(0)} \), and a smaller non-adiabatic part, \(\delta h_e \). Namely, \(\delta f_e = \delta f_e^{(0)} + \delta h_e \), with \(|\delta f_e^{(0)}| \gg |\delta h_e| \). This latter separation saves immensely on computational costs by analytically removing high frequency modes (the so-called \(\omega_H \) mode [27]), which reduces particle noise associated with the adiabatic electrons. To obtain an expression for \(\delta f_e^{(0)} \), we expand equation (1) to first order in \(\omega / k || v || \):

\[
v || \mathbf{b} \cdot \nabla \phi^{(0)} - \mathbf{b} \cdot Z_\alpha \nabla \phi \frac{\partial}{m_\alpha \partial v ||} f_{e0} = 0,
\]

\[
\delta f_e^{(0)} = \frac{-Z_\alpha \nabla \phi}{T_e} f_{e0}.
\]

(7)
Equation (6) can now be rewritten as,

$$L \delta \phi_e = -L(f_0 + \delta f^{(0)}) = -(\delta L + LZF)f_0 - f_0(L_0 + LZF)\frac{\delta f^{(0)}}{f_0}. \tag{8}$$

After simplifying, equation (8) becomes,

$$L \delta \phi_e = f_0 \left[\frac{\partial}{\partial t} Z \frac{\delta \phi}{T_e} - \delta v_E \cdot \nabla \ln f_0 |_{v \perp} - (v_d + \delta v_E) \cdot \nabla \left(\frac{Z \phi_{ZF}}{T_e} \right) \right]. \tag{9}$$

2.3. Equilibrium radial electric field

To add the effects of the radial electric field, the definition of the electrostatic potential is extended to include an equilibrium part:

$$\phi = \delta \phi + \phi_{ZF} + \phi_{eq}, \tag{10}$$

where, ϕ_{eq} is the equilibrium potential. L_0 now becomes,

$$L_0 = \frac{\partial}{\partial t} + (v_|| b_0 + v_d + v_{E0}) \cdot \nabla - b^* \cdot \mu B_0 \frac{\partial}{\partial \psi} \frac{m_i}{m_e}, \tag{11}$$

where, the new term in the operator is $v_{E0} = \frac{b_0 \times \nabla \phi_{eq}}{B_0}$. This additional term, associated with the equilibrium radial electric field in equations (10) and (11), as well as the nonlinear propagator L, is now added to the ion gyrokinetic equations in section 2.1. Regarding electron drift kinetic equation, equation (9) now becomes,

$$L \delta \phi_e = f_0 \left[\frac{\partial}{\partial t} Z \frac{\delta \phi}{T_e} - \delta v_E \cdot \nabla \ln f_0 |_{v \perp} + v_{E0} \cdot \nabla \left(\frac{Z \phi_{ZF}}{T_e} \right) \right]. \tag{12}$$

Assuming $k_z L_T \gg 1$, the new term in equation (12) can be combined with the second term yielding,

$$L \delta \phi_e = f_0 \left[\frac{\partial}{\partial t} Z \frac{\delta \phi}{T_e} - \delta v_E \cdot \nabla \left(\ln f_0 |_{v \perp} + v_{E0} \cdot \nabla \left(\frac{Z \phi_{ZF}}{T_e} \right) \right) \right]. \tag{13}$$

With the equilibrium radial electric field, there is the associated equilibrium toroidal flow needed to satisfy equation (5). This necessitates the approximated equilibrium particle distribution becoming a shifted maxwellian:

$$f_{e0} \approx n_e \left(\frac{2 \pi T_e}{m_e} \right)^{3/2} \exp \left[-\frac{(2 \mu B_0 + m_e(v|| - v_{||0})^2/2T_e)}{T_e} \right],$$

where n_i and P_i are the ion density and pressure, q and Ω_θ are the magnetic...
3. Verification of radial electric field shear effects

To verify the formulation and implementation of radial electric field shear effects, a set of benchmarks are prepared using simple toroidal geometry with profiles and parameters being taken from the well known Cyclone base case [28]. Specifically, the cyclone base case consists of an electrostatic system, an axisymmetric tokamak with circular cross sections, a hydrogenic plasma, a magnetic safety factor, $q = 0.8\psi_N + 1.1\psi_N + 1.0\psi_N^2$, where ψ_N is the poloidal magnetic flux normalized to the separatrix value, $T_i = T_e$, $R_0/L_{T_i} = R_0/L_{Te} = 6.9$, $R_0/L_m = 2.2$, $a/R_0 = 0.36$, where $L_x = \partial \log x/\partial r$ is the scale length of quantity x, R_0 is the major radius at the magnetic axis, a is the minor radius at the plasma edge, and $r = 0.5a$. With these parameters, the system contains an unstable ITG mode, with the single toroidal mode number $n = 10$. Also, these parameters yield $k_\theta \rho_i = 0.22$, which is the dominant wavenumber observed in nonlinear simulations of this case. ITG simulations with these parameters have previously been studies in [29].

Firstly, the effects of rigid rotation, $\partial \phi_{eq}/\partial \psi_N = \text{const.}$, are tested, where the Mach number due to the E_r induced parallel flow, $M = v_{\|0}/C_s$, with $C_s = \sqrt{T_e/m}$ being the sound speed, is scanned in the range $M = [0, 0.25]$. The expectation is that for $M \ll 1$ the effects of rigid rotation should be negligible. GTC find that for the case of largest Mach number, $M = 0.25$, the ITG growth rate is found to vary by 1%, within the error of the measurement. For context, value of M in the pedestal top region of DIII-D, for the cases to be examined in this work, is about 0.20. Moreover, if the newly added term
in equation (13) is omitted from the simulation and E_r effects only enter the system via the equations of motion, a large electron response to the uniform radial electric field is observed. This signifies that the new term in the electron δh equation is very important in capturing the physics under consideration.

Secondly, the effects of E_r shear, $\omega_s = \left(\frac{RB_p}{\gamma_0}\right)^2 \frac{\partial^2 \phi_{eq}}{\partial \psi^2}$, are considered. In this case, all simulation parameters are the same as above, except ω_s is scanned in the range $\omega_s/\gamma_0 = [0, 1.1]$, where γ_0 is the maximum linear growth rate in the absence of E_r shear, and $\partial \phi_{eq}/\partial \psi = 0$ in the middle of the simulation domain. Figure 1(a) shows the simulated ITG growth rate versus the magnitude of ω_s, which are both normalized to γ_0. As the magnitude of the shear is increased, the instability growth rate decreases, roughly as $|\omega_s|^1/3$, until it completely goes to zero near $\omega_s/\gamma_0 = 1$. Also, the stabilization of E_r shear does not depend on the sign of the shear. Moreover, when ω_s roughly equals the maximum growth rate, the ITG mode is completely stabilized. This is depicted in figure 2, where the 2D mode structures of the perturbed electric potential, for four points, corresponding to $\omega_s/\gamma_0 = 0.0, 0.04, 0.12, 1.1$, from figure 1(a) are shown. All four mode structures are taken from the same physical time in each simulation and use the same initial conditions. Thus, the magnitudes from each figure can be compared to one another.

The ω_s scaling is further extended to nonlinear simulations of the Cyclone base case, to study the effect of ω_s on transport and zonal flows. Figure 1(b) shows the heat conductivity and particle diffusivity, versus ω_s/γ_0. All plotted quantities display a similar behavior as the ITG growth rate in figure 1(a), as they are seen to vanish as ω_s/γ_0 approaches unity.

4. Simulations of microturbulence in DIII-D pedestal top

Here we use as input to GTC the equilibrium profiles obtained from $n = 2$ ELM suppression studies reported in [10]. In [10], a concomitant flattening of the $E \times B$ shear and increase in ion-scale fluctuations is seen at the top of the pedestal in the ELM suppressed state compared to ELMing conditions with the same level of RMP. Similarly, a reduction in turbulence and transport is seen in the transition from ELM suppression to ELMing conditions. The reduction in the fluctuations is correlated with an increase in the top of pedestal $E \times B$ shear. Here we analyze three kinetic equilibria generated from the data collected in the $n = 2$ RMP experiment. The first, for discharge #158104 is taken at $t \approx 1350$ ms during the ELMing phase before the $n = 2$ RMP is turned on. The second and third equilibria are from discharge #158103 during $n = 2$ RMP ELM suppression at $t \approx 3050$ ms and during ELMing conditions with RMP at $t \approx 3750$ ms, respectively. A description of
the plasma conditions can be found in [10] and a description of the $n = 2$ RMP field amplitude and spectrum can be found in [30].

Figure 3 shows the profiles for these three sets of DIII-D equilibria. By comparing the scale length profiles, we see that the ELM suppressed case has lower R_0/L_n and R_0/L_T at the pedestal top ($\psi_n \approx 0.94$), when compared to the ELMing cases. In the absence of $E \times B$ shear, these profile changes will tend to reduce the drive for ion scale turbulence in ELM suppression, relative to ELMing conditions. However, using GTC simulations, we show that the reduction in the $E \times B$ shear during ELM suppression (shown in figure 3(e)) leads to an overall increase in the top of pedestal ion scale turbulence, consistent with experiment.

4.1. Simulation setup

In the following simulations, numerical convergence has been obtained. The number of particles per cell, for both ions and electrons, is 100 or 10 for nonlinear or linear simulations, respectively. The time step used is $\Delta t C_s / R_0 = 0.008$. The spatial resolution is $\Delta r / \rho_i \sim r \Delta \theta / \rho_i \sim 0.25$, and there are 32 poloidal cross-sections in the whole torus. The radial domains used are $\psi_N = [0.67, 0.97]$ for 158104.01350 and 158103.03750, and $\psi_N = [0.68, 0.98]$ for 158103.03050, where ψ_N is the normalized poloidal flux. The perturbed electric field is solved with a Dirichlet boundary condition, and neither toroidal nor poloidal filtering is performed on the solution. Profiles are measured using active carbon charge exchange spectroscopy and Thomson scattering measurements, as described in [10], and 3D magnetic equilibria are obtained from VMEC [31]. Since the effects of 3D magnetic perturbation with closed flux surface on the pedestal top turbulence [15] was found to be small in earlier GTC simulations, only the axisymmetric n = 0 equilibrium profiles are kept in this work, so as to focus our study on the effects of the profile differences between ELMing and ELM suppressed plasmas. When using collisions we use the electron-ion Lorentz scattering model and in this case $\nu_e, i \approx \nu_e, e \gg \nu_i, i$, with $\nu^* = \nu_e, e / \omega_{be} = 0.031$, where ω_{be} is the electron bounce frequency.

4.2. Effects of E_r shear and collisions on linear instabilities

Linear GTC simulation results for the ELM suppressed case (158103 at 3050 ms) show the effects of E_r and collisions on the linear growth rates. Figures 4(b)–(e) illustrates the linear radial mode structures of the perturbed electrostatic potentials from four different linear GTC runs. Each simulation contains different physics: no collisions and no E_r (base case), collisions only, E_r only, and collisions and E_r (comprehensive case). For reference, the equilibrium pressure gradient (orange) and $E \times B$ shearing rate (ω_s, green) profiles are also depicted in figure 4(a). In all four cases the unstable modes...
were found to be ITG-like, as they are strongly enhanced by kinetic electrons [23] and rotate in the ion diamagnetic direction. The dominant modes are found to have $k_\theta \rho_i \approx 1$, however nonlinear simulations to be shown in section 4.3 will show that smaller wavenumbers are also present yet with smaller growth rates. Due to the steep gradients in the simulation domain, the growth rate is close to linear frequency, the mode is not conventional ITG even though the frequency is still in the ion direction [20–22]. It is more like electrostatic interchange mode [20–22]. We note that the the inclusion of kinetic electrons is necessary for accurate modeling of the experimental case under consideration, as the trapped electron enhancement of the ITG-like instabilities is observed to be significant.

The base case without collisions or E_r (figure 4(b)) shows the modes dominantly localized in the top of pedestal region, $\psi_n > 0.93$, with some activity near $\psi_n = 0.73$. Adding collisions (figure 4(c)) decreases the real frequency and growth rate by 5% and 17%, respectively, and the fluctuations near $\psi_n = 0.73$ are no longer seen. For E_r only with no collisions (figure 4(d)) the growth rate decreases by 9% and the real frequency increases substantially in the lab frame, due to the
Er induced Doppler shift. The large Er shear in the pedestal stabilizes the interchange modes beyond $\psi_n > 0.83$, leaving unstable modes confined to $\psi_n < 0.83$, with peak amplitude at $\psi_n \approx 0.72$. Lastly, the mode structure for the comprehensive case (figure 4(e)) is similar to the case with Er only, however, the growth rate is lower by 50% due to collisions. The reduction of the growth rate by electron collisions is due to the collisional de-trapping of magnetically trapped electrons, which enhance ITG growth rate [23]. All growth rates and real frequencies are summarized in the legends of figures 4(b)–(e), where real frequencies and growth rates are in units of kHz and krad/s, respectively, and are taken in the lab frame. Also, mode amplitudes are normalized in each panel according to each panel’s respective maximum value, as these are linear.
simulations and the physical value of the amplitude is arbitrary. The relative instability strength of each physics case can be inferred from the difference in growth rates. Figure 4(f) shows the perturbed electrostatic potential in a poloidal cross section for the comprehensive case, which is observed to be ballooning.

When including both collisions and \(E_n \), GTC simulations (figure 4(e)) reveal the linear eigenmodes to be localized near \(\psi_N = 0.72 \) during ELM suppression—this is not near the region at the top of the pedestal (\(\psi_n \approx 0.94 \)). However, nonlinear simulations in section 4.3 will show a qualitative difference at the top of the pedestal due to turbulence spreading from the region where the linear growth rate peaks at \(\psi_n \approx 0.72 \) to the top of the pedestal at \(\psi_n \approx 0.94 \).

4.3. Nonlinear spreading

After considering the linear effects of different physics and gaining insight into the roles of collisions and \(E_n \), nonlinear simulations, with both collisions and \(E_n \), of 158104.01350, 158103.03750, and 158103.03050 are carried out. Figure 5 depicts the radial profiles of simulation inputs and simulation results for all three DIII-D cases. The figure shows the pressure drive and \(E_n \) profiles (top row), radial profiles (flux-surface-averaged) for the linear and nonlinear phases of the fluctuations (middle row), and the observed transport coefficients (bottom row). In all three cases, linear eigenmodes are localized away from the pedestal top (\(\psi_N = [0.7, 0.8] \)), with those of 158103.03050, during ELM suppression, being slightly broader. Nonlinear spreading of turbulence is observed in all three cases, however, the larger \(E \times B \) shearing rate at the top of the pedestal in the ELMing cases prevents the turbulence from spreading past \(\psi_N \approx 0.8 \). Evidence for actual turbulence spreading is observed, as time histories of the perturbed electrostatic potential at outer radii (beyond \(\psi_N \approx 0.8 \)) show that perturbations in these regions only begin to grow after the turbulence has spread to those regions. In the ELM suppressed case, the \(E \times B \) shearing rate is significantly lower between \(\psi_N = [0.8, 0.9] \), and the turbulence is observed to spread to \(\psi_N \approx 0.93 \), the pedestal top. Similar trends are found in the heat and particle transport coefficient, shown in figures 5(g)–(i).

The weakened \(E \times B \) shear in the ELM suppressed case leads to higher transport coefficients at the top of the pedestal relative to the ELMing cases. We note that the large electron to ion heat conductivity ratio is due to the strong enhancement of the ITG-like turbulence due to the trapped electrons, as previously seen in [23]. These results are consistent with experimental observations [10] of increased ion-scale turbulence and transport near the pedestal top during RMP induced ELM suppression.

The 2D poloidal mode structures for the linear and nonlinear simulations for these three cases, are shown in figure 6. The upper row depicts the linear phases, which show interchange modes. The black dashed lines depict the simulation boundaries, and the red curves show the \(q = 4 \) surface in each case. The lower row presents the nonlinear phases of the GTC simulations. It can be seen that the microturbulence spreads to the \(q = 4 \) surface only for the ELM suppressed case, and not for the two ELMing cases. The turbulence is shown to spread farther in figure 6(f) than 5(f), as in the former we perform rms averages over poloidal angle, and in the latter the outer midplane is shown.

Figure 7 shows the linear and nonlinear spectra of poloidal wavenumber for these three cases. It can be seen that there is significant outward spreading of the longer wavelength turbulence in the ELM suppressed case, as the turbulence is observed to spread to the pedestal top, \(\psi_N \sim 0.93 \) in that case only. The ELMing cases, with and without \(n = 2 \) RMPs, do not exhibit a strong downward spectral cascade, nor outward spreading, as there is a large \(\omega_i \) separating the regions of significant linear instability and the pedestal top.

To demonstrate that the enhanced turbulence spreading in the ELM suppressed case is due to the weaker \(E \times B \) shear, nonlinear simulations of shot \#158103.03050 have been repeated with the \(E \times B \) shear scaled up by a factor of two. Figure 8(a) shows the original and doubly scaled \(E \times B \) shearing profiles, along with the pressure scale length profile for 158103.03050 in the simulation domain. Figure 8(b) shows the new (purple) radial profile of the flux-surface-averaged electrostatic potential. The nonlinear turbulence spreading for the two times \(E \times B \) shear is seen to entirely stop near \(\psi_N \sim 0.85 \), and the mode amplitude between \(\psi_N = [0.7, 0.85] \) is significantly less than the original case (red). Thus, we conclude that the turbulence spreading in this RMP ELM suppressed case is due its weak \(E \times B \) shearing rate.

5. Discussion and conclusion

Nonlinear electrostatic GTC simulations of DIII-D shot 158104 at 1350 ms (ELMing no RMP), 158103 at 3750 ms (ELMing with \(n = 2 \) RMP), and 158103 at 3050 ms (ELM suppressed with \(n = 2 \) RMP) find significantly larger and broader turbulence and transport at the pedestal top in the ELM suppressed case. From gyrokinetic simulations, linear eigenmodes, localized in the core, nonlinearly spread to the pedestal top. This increase in turbulence spreading is attributed to the \(E_i \) shearing rate being significantly lower just inside of the pedestal top in the ELM suppressed case. These results are consistent with previous observations [10] of significant increases of fluctuations near the pedestal top, and may explain these observations.

Our results suggest that the observed decrease in the \(E \times B \) shear near the pedestal top may account for the increase in ion-scale fluctuations observed in these experiments in the transition to ELM suppression. Our GTC simulations also show a significant increase in transport at the top of the pedestal in the ELM suppressed phase, suggesting that the reduction of \(E \times B \) shear can contribute to ELM suppression by enhancing turbulent transport at the top of the pedestal. However, demonstrating the physics mechanism behind the \(E_i \) profile change during ELM suppression is beyond the scope of this work. Moreover, we note that the increase of ion scale turbulence and decrease in \(E \times B \) shear, at the pedestal top, are not universal conditions of ELM suppression, as noted earlier [3, 12]. Hence, our results suggest that pedestal top
transport stemming from a reduction of $E \times B$ shear can help limit the pedestal width, but it may not be needed in all cases of RMP induced ELM suppression. Therefore, it is important to increase the experimental database to identify the different physical mechanisms capable of limiting the growth of the pedestal to an unstable width, and achieving RMP induced ELM suppression, as well as developing a predictive model to explain the dependency of the equilibrium radial electric field on the RMP.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, DOE grant DE-SC0013804 and SciDAC ISEP. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and by Princeton Plasma Physics Laboratory under Contract DE-AC02-09CH11466. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORCID iDs

D. Spong © https://orcid.org/0000-0003-2370-1873

References

[28] Horton W. 1999 Drift waves and transport Rev. Mod. Phys. 71 735