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1.  Introduction

Kinetic effects at microscopic scales play important roles in 
the evolution of macroscopic magnetohydrodynamic (MHD) 
modes such as neoclassical tearing modes (NTM) [1, 2], ren-
dering global kinetic simulations of toroidal plasmas a neces-
sity. The dominant features of NTMs are magnetic islands 
driven by helical perturbations of the bootstrap current [3] in 
the vicinity of mode rational surfaces. Large magnetic islands 
can degrade confinement properties and even lead to disrup-
tions in fusion reactors [4]. Therefore, predictive capability 
needs to be established for NTM in next-step fusion devices 
such as ITER [5].

The NTM dynamics involve the coupling of neoclas-
sical effects, microturbulence, and island dynamics, which 
largely differ from one another in their spatial and temporal 
scales [4, 6, 7]. Kinetic [8–11] and fluid [12, 13] simula-
tions addressing the coupling of multiple physical processes 
have been carried  out in recent years for NTM studies. 
Resolving disparate spatiotemporal scales is necessary for 
the understanding of NTM physics, including the threshold of 
seed island size, island growth rate, and nonlinear dynamics. 

Numerical difficulties associated with kinetic simulations of 
the tearing modes make self-consistent NTM simulations even 
more arduous. The motivation of this work is thus to develop 
the kinetic NTM simulation capability including the interac-
tions of magnetic islands, bootstrap current, microturbulence, 
and energetic particles.

Bootstrap current is a self-generated parallel current resulting 
from pressure gradients and collisional effects in the toroidal 
geometry [14], and can greatly enhance the plasma confine-
ment. It is roughly proportional to the radial pressure gradients 
of trapped electrons in the toroidal plasmas [3]. The conven-
tional wisdom is that magnetic islands can reduce the elec-
tron pressure gradients through rapid parallel transport, and 
consequentially reduce the bootstrap current. The reduction in 
the bootstrap current in turn causes a magnetic perturbation to 
amplify the islands. Therefore, an accurate calculation of the 
bootstrap current in response to the islands is important for 
understanding the NTM drive, especially the threshold of the 
seed islands.

Hornsby et al [15] used a minimal drift-kinetic model to 
demonstrate the effects of magnetic islands and turbulent 
transport on the electron profiles and the bootstrap current, 
and showed that finite pressure gradients (and associated 
bootstrap current) can exist within the islands when turbulent 
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transport is sufficiently strong. Poli et al [16, 17] used Monte 
Carlo simulations to study finite ion orbit width effects on the 
bootstrap current, and showed that a finite bootstrap current 
could exist within the islands when the island width is com-
parable to the ion orbit width. Bergmann et al [18] found that 
when the islands are rotating at the electron diamagnetic fre-
quency, bootstrap current could be completely preserved due 
to small island effects. The rotation of the islands also affects 
the pressure profile flattening [22].

In this work, we use gyrokinetic toroidal code (GTC) 
[19] to study the effects of magnetic islands on neoclas-
sical transport. Jiang et al [20, 21] implemented magnetic 
islands in the GTC to study the effects of magnetic islands 
on drift wave instabilities, where neoclassical effects were 
not included. In the current simulations, the flattening of 
the pressure gradients by the islands is verified first. The 
electron neoclassical transport level is also verified in the 
simulations without the islands. The bootstrap current level 
from simulations without the islands agrees very well with 
analytical results.

In this paper, the effects of the static magnetic islands on 
the electron bootstrap current are studied for various collision-
ality regimes in the absence of microturbulence. Surprisingly, 
magnetic islands cause little changes of the bootstrap current 
level in the banana regime because of trapped electron effects. 
As the collision frequency increases to the plateau regime, 
the bootstrap current is completely suppressed at the island 
centers due to the destruction of trapped electron orbits by 
collisions and the flattening of pressure profiles by the islands. 
In the collisional regime, a small but finite bootstrap current 
can exist inside the islands because of the pressure gradi-
ents created by large collisional transport across the islands. 
Finally, simulation results show that the bootstrap current 
level increases near the island separatrix due to steeper local 
density gradients.

The reason that magnetic islands does not suppress the 
bootstrap current in the banana regime is that trapped elec-
trons are mostly not affected by the islands. The remaining 
trapped electron pressure gradients create an anisotropy in the 
parallel velocity, which induces a parallel flow of the passing 
electrons by the collisional friction force across the trapped-
passing boundary. Therefore, the bootstrap current can sur-
vive inside the islands even though the pressure profiles of the 
passing electrons are flattened by the islands. These simula-
tion results could have significant implications to the theory of 
NTM excitation based on the conventional picture of islands 
suppressing the bootstrap current by flattening the pressure 
profiles. Our simulations thus call for better understanding of 
the effects of magnetic islands on the bootstrap current using 
fully self-consistent simulations.

The rest of this paper is arranged as follows: formulation 
and verification of the simulation scheme is presented in 
section 2, followed by the simulation results of the island 
effects on the bootstrap current in section 3. In section 4, 
we discuss the dependence of the bootstrap current on the 
collision frequency in the presence of the islands. In sec-
tion  5, we summarize the main results and discuss future 
studies.

2.  Formulation and verification of neoclassical 
simulations

2.1.  Implementation of magnetic islands in GTC

First-principles gyrokinetic simulations of toroidal plasmas 
with magnetic islands superimposed on the equilibrium 
field are carried out using GTC, which has extensively been 
applied to study instabilities, turbulence, and transport in 
fusion plasmas [23–27]. In this work, GTC is utilized to study 
the effects of static magnetic islands on neoclassical bootstrap 
current.

In the simulations, we use magnetic coordinates (ψ, θ, 
ζ) representing, respectively, poloidal flux, poloidal, and 
toroidal angles. The equilibrium field is: = =BB b0 0 0  
ψ θ ψ ζ δ ψ θ ζ∇ ×∇ −∇ ×∇ = ∇ + ∇ + ∇q I g , where q  

is the safety factor, g and I are the poloidal and toroidal cur
rents (divided by 2π). The radial component δ arises from 
the non-orthogonality of the Boozer coordinates and is usu-
ally small for large aspect-ratio tokamaks [28]. The imposed  
static magnetic island perturbations are in the form of δ =B   
δ α∇× = ∇×A B0, and A B m ncos0/ ( )α δ α θ ζ= = −  is 

independent of the poloidal flux ψ for simplicity. Here m is 
the poloidal mode number and n is the toroidal mode number. 
If we consider B 00∇× =  and neglect the δ-term, Bδ  would 
be in the radial direction only. We can define the helical flux 
as qh t s/ψ ψ ψ α= − −  to represent the magnetic field geom-
etry (solid line in figure 3),where q m ns /= , tψ  is the toroidal 
flux function, so that B 0hψ⋅ ∇ ≅  [20]. Island separatrix is 
defined by q 0h t s

2[ ( / )]ψ ψ ψ− − = , giving the island half 

width (radial distance from O-point to the separatrix at 0θ = ) 

w R q q0 0 s s
1 2( / ) /

α= ′ , where q q rd ds /=′  is the gradient of the q 

profile at the resonant surface.

2.2.  Gyrokinetic simulation of neoclassical transport with 
magnetic islands

In GTC simulation, the dynamics of guiding centers are gov-
erned by the Hamiltonian in the phase space of vX, ,( )µ  [29],

H m v B q
1

2
2 µ φ= + +α α

where X denotes spatial coordinates, µ denotes magnetic 
moment and v|| denotes parallel velocity along the field line, 
m q/α α is the particle mass/charge for each species, B is magn
etic field amplitude, and φ is gyrophase averaged electrostatic 
potential.

From canonical guiding center equations of motion [27], 
the gyrokinetic Vlasov equation with only neoclassical drive 
and static magnetic island is in the form of:
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where f vX, ,( )µ  is guiding center distribution function, 

δ= +B B B0 , B B B0 δ= +∗ ∗ , bB B
B v

0 0 0
0= + ∇×∗
Ω

, and 

Bδ  is the imposed island perturbation described in the last 
subsection.

The magnetic drift velocity is the sum of magnetic cur-
vature and gradient drifts (neglecting island contributions to 
magnetic field magnitude):

v B

m
v

b b
d

2
0 0 0µ

=
∇×

Ω
+

×∇
Ωα α α

The Fokker–Planck collision operatiors C f( )�  include inter-
species and like-species collisions that conserve particle 
number, momentum, and energy as described in [30].

A perturbative fδ  method is adopted for GTC neoclassical 
simulations [29, 31] to reduce particle noise with smaller 
number of particles and simpler particle loading profile com-
pared with the full-f method. Here, particle distribution is sep-
arated into equilibrium and perturbed parts: f f f0 δ= + . The 
equilibrium distribution function f0 satisfies

f

t
v

B
f

m B
B

f

v
Cf

B B1
0.0 0

0
0

0

0
0

0
0

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟µ

∂
∂
+ ⋅ ∇ + − ⋅ ∇

∂
∂
− =

α

�

The local Maxwellian equilibrium distribution function is an 
exact solution to the above equation in (X, µ, v||) coordinates:
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We define a particle weight w f f/δ=  and a gradient operator 
n n E T T T3 20 0 0 0 0/ ( / / ) /κ = ∇ + − ∇ . The weight equation can 

be derived from the perturbed distribution function and is 
expressed as:
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The first term in the RHS bracket is the magnetic flutter drive 
due to the guiding center parallel motion, and the second term 
is the neoclassical drive due to the perpendicular guiding 
center drifts. This weight equation and the guiding center orbit 
equations form a closed system of equations for gyrokinetic 
simulations of neoclassical transport in toroidal plasmas in the 
presence of magnetic islands.

2.3.  Verification of GTC simulation of bootstrap current

In the simulations, uniform Maxwellian of electrons and 
ions are loaded over an annulus section  of torus. We use 
representative plasma parameters with a major radius 
R 1.86 m0 = , a minor radius a R0.246 860 iρ= =  ( iρ  is 
the ion gyroradius), a parabolic q profile = +q 1.475   

+ψ
ψ

ψ
ψ

1.1 1.0
w w

2

2 , a circular cross section and a hyperbolic den-

sity profile n n 1.0 0.205 tanh 0.3 2.5 1.0e 0
w( )( )⎡

⎣⎢
⎤
⎦⎥= + − −ψ

ψ
, 

with the poloidal flux function r a w( )ψ ψ= = . At r  =  0.5a, 
Zeff  =  1.5, B0  =  1.35 T, Ti  =  Te  =  5.0 keV, q  =  2.0, 
R0/Ln  =  2.2 (Ln is the density gradient scale length). The 

Figure 1.  Bootstrap current jb dependence on collision frequency ν∗ 
without magnetic islands. The solid line is the analytic expression 
in [3].

Figure 2.  Electron (upper panel) and ion (lower panel) density 
profiles in collisionless plasmas. The black solid lines  
are density profiles at the high field side. The red-dashed lines are 
density profiles at the low field side. The two vertical lines represent 
the island separatrices. The blue-dashed lines are the density 
profiles without magnetic islands.
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effective collision frequency is defined as the physical 
collision frequency normalized by the bounce frequency 

qR v3 2
0 th//ν ε ν=∗ − , where r R0/ε =  is the local inverse aspect 

ratio, v T mth
1 2( / ) /=  is the particle thermal velocity. With these 

parameters, 0.028ν =∗ , corresponding to the core of present 
day tokamak plasmas. A total of 1.25 107×  particles are used 

in the simulations. The electron particle flux is v f vdd e∫ δΓ = , 
energy flux is Q v mv f v2 dd

2
e/∫ δ= , and bootstrap current den-

sity is j v f v1 cos db e /( )∫ δ ε θ= + . Flux-surface averaging is 
applied to all neoclassical fluxes [29].

Collision frequency is scanned and details of the neoclas-
sical transport are first investigated in the absence of the islands 
to verify the numerical scheme in the neoclassical simula-
tions. The calculated neoclassical flux values agree well with 
the analytic expressions for the large aspect ratio tokamak in 
[3]. The bootstrap current jb in the absence of magnetic islands 
from the simulations with different collision frequencies are 
presented as blue crosses in figure 1. For comparisons, results 
from the analytic expression [3] is also plotted as the black 
line in figure  1. The bootstrap current is normalized by the 

value at small collision frequency limit j 1.46 c

B

P

r0
d

dp0
ε= ⋅ . 

GTC results agree quite well with the analytical results in the 
banana, plateau, and collisional regimes, with an average error 
of 3.3%.

2.4.  Verification of density flattening by magnetic islands

The m  =  2, n  =  1 islands, which are most catastrophic for 
some tokamak experiments, are now added to the equilibrium 
magnetic field. The islands are static and non-rotating, and 
center at r  =  0.5a with an island width of w  =  12ρi. Due to 
the fast parallel transport, the electron and ion density profiles 
flatten inside the island area. At the low field side 0θ = , where 
the toroidally trapped particles are present, the flattening of 
the density profile is smaller than that at the high field side 
θ π= , where there are no trapped particles. To verify the 
validity of the island formulation, the electron and ion den-
sity profile changes by the islands are investigated in detail. 
The density flattening is illustrated in figure  2, where col
lisionless plasmas are considered so that the particle orbits are 
Hamiltonian (stochasticity may still exist in small region near 
the island separatrices due to numerical dissipations). The 
electron and ion density profiles are measured locally in 0θ =  
or θ π=  (averaged over 0.005θ π∆ = ), and 0ζ =  (averaged 
over 0.03ζ π∆ = ), and averaged over one bounce time after 
the density profiles and the neoclassical fluxes reach the 
steady state. At the center of the simulation domain r 43 iρ= , 

0.12ε = , q 2.0= .
The initial radial density profiles are hyperbolic, as indi-

cated by the blue dashed lines, which change little in the 
absence of islands. However, in the presence of the islands, the 
density profiles flatten inside the island and reach the steady 
state in a few bounce times. When the collision frequency is 
small, the toroidally trapped particles (mostly at the low field 
side) do not follow the entire field lines around the islands. 

Figure 3.  Poloidal contour plots of electron (upper panel) and 
ion (lower panel) perturbed density in collisionless plasmas with 
islands. The solid black lines are island separatrices. Red is positive 
density change and green is negative density change.

Figure 4.  Time history of volume-integrated bootstrap current 
jb (upper panel) and electron particle flux Γ (lower panel) in 
the plateau regime with (black-solid) and without (red-dashed) 
magnetic islands.

Nucl. Fusion 57 (2017) 036009
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Therefore, the trapped particles at the low field side retain 
their initial radial density profiles, resulting in a less flattened 
density profile at the low field side in the banana regime.

From figure 2, the ion density profile at the low field side 
only has a small deviation from the equilibrium profile. The 
electron density profile has ~40% flattening, which is close 
to the passing fraction f1 1 – 1.46 ~ 0.49t

1 2/ε− = . This result 
is consistent with that of Hornsby et al [8]. The fact that the 
ion density profile at the low field side is less flattened might 
be caused by the finite passing orbit width ~qρi. The passing 
ion orbit width is not negligible compared with the island 
size, while the passing electron orbit width is negligible. This 
picture is confirmed by the electron and ion poloidal den-
sity perturbation contour plots shown in figure  3, in which 
the electron density perturbation shows a clearer island shape 
while the ion density perturbation is blurrier.

Figure 2 shows that at the high field side, ion density 
profile is almost completely flattened in the island center, 
while the electron density profile maintains a finite gradient. 
This difference might be caused by island trapping of the 

electrons. The island trapping term is included in the simula-
tions through the mirror force of the equilibrium magnetic 
field when the electrons move along the field line. Therefore, 
the islands will have their own ‘island-trapped electrons’ 
with a trapped fraction proportional to the square-root of the 
island effective inverse aspect ratio w Ris 0/ε = . This effect 
causes the electrons to be trapped on the island ‘low field 
side’, which is closer to the magnetic axis at the high field 
side (θ  =  π). Ions will not have this effect since their island-
trapped orbit width would be even larger than the island size, 
making them stay untrapped. The difference between ion 
and electron local density profiles might induce a parallel 
electric field inside the islands, which can in turn modify 
their profiles in fully self-consistent simulations. This self-
consistent ambipolar field can be an important physics in 
NTM dynamics that has not been addressed in conventional 
NTM theory.

With collisions, the electron and ion density profiles still 
flatten inside the islands, though the profile shape varies with 
the collision frequency. The collision frequency dependence 

Figure 5.  Radial profiles of bootstrap current (lower panel) and electron density (upper panel) in the plateau regime. The current and 
density profiles are averaged over one transit time. The two vertical lines represent the island separatrix.

Nucl. Fusion 57 (2017) 036009
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of the electron density profiles is illustrated in figure 6 and 
will be discussed in the later section.

3.  Effects of magnetic islands on bootstrap current

We now study the effects of magnetic islands on electron boot-
strap current using island perturbations and plasma param
eters described in section 2. For simplicity, only electrons are 
loaded in the simulations. Self-consistent electric field is not 
solved, and thus quasi-neutrality does not play any role in the 
present simulations. Electron particle flux and bootstrap cur
rent are measured in the simulations. As shown in figure 4, the 
bootstrap current reaches the steady state in a few collision 
times in the plateau regime. The volume-integrated bootstrap 
current is not changed by the islands, although the radial pro-
file changed drastically in the vicinity of the islands as shown 
in figure 5.

The island induced radial particle transport, which slowly 
reaches the steady state after about ten collision times, is much 
larger than the neoclassical transport level calculated in the 
absence of the islands as shown in the lower panel of figure 4. 
The electron density profile also reaches the steady state 
inside the islands on the same time scale. When the collision 
frequency is smaller, the electron particle flux drops closer to 
the neoclassical level calculated without the islands as shown 
in figure 7. As the collision frequency increases, the magnetic 
islands induce a larger particle transport compared to the neo-
classical level calculated without the islands. If ions are also 
simulated, the difference in the particle fluxes between ions 
and electrons can induce an ambipolar radial electric field, 
which will eventually constrain the ion and electron particle 
fluxes to the same level.

The bootstrap current and density profiles in the plateau 
regime (ν∗  =  1.4) is illustrated in figure  5. As the islands 

Figure 6.  Collision frequency dependence of electron density profiles in the presence of islands. The black lines are the density profiles at 
the high field side. The red-dashed lines are the density profiles at the low field side. The vertical lines represent the separatrices. The blue-
dashed lines are the electron density distributions without magnetic islands.

Nucl. Fusion 57 (2017) 036009
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cause density flattening, the bootstrap current decreases dra-
matically inside the islands. On the other hand, the steepening 
of the density gradients outside the islands leads to a larger 
bootstrap current in the vicinity of the separatrix. If the boot-
strap current accounts for a large fraction of the total plasma 
current, the variations in radial bootstrap current profiles can 
affect the q profile and local magnetic shear, and thus MHD 
stability properties. Outside the separatrices, the bootstrap 

current level has small radial oscillations, which correspond 
to the oscillations in the density gradient profiles. This can 
be caused by the transport process: a steeper gradient causes 
a larger radial transport, resulting in a smaller gradient in the 
adjacent region, which would then steepen the gradient in the 
next adjacent region. This process seems to be analogous to 
the phase space oscillations in the standard Landau damping 
picture.

Figure 7.  Time history of electron particle fluxes for various collision frequencies. The red-dashed lines are electron particle fluxes without 
magnetic islands. The black-solid lines are particle fluxes with magnetic islands.

Figure 8.  Radial profiles of bootstrap current for various collision frequencies. The blue-dashed lines are the bootstrap current profiles 
without the islands. The black-solid lines are the bootstrap current profiles with the islands. The vertical lines represent the separatrices.

Nucl. Fusion 57 (2017) 036009
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4.  Collision frequency dependence of bootstrap 
current

The collision frequency is now scanned in the simulations 
with the islands to study the collision frequency dependence 
of bootstrap current. In the banana regime ( 1ν <∗ ), the trapped 
electron orbits are not fully destroyed by the collisions. They 
contribute to the finite density gradients inside the islands at 
the low field side, as illustrated by the red short-dashed lines 
in figure 6. In the plateau regime ( ~ 1ν∗ ) where the collision 
time is comparable to the trapped particle bounce time, the 
trapped particle orbits are mostly destroyed by collisions. 
Consequently, the trapped electron density profiles are gradu-
ally flattened inside the islands. The electron density profiles 
are now fully flattened at both high field and low field sides. 
Slightly reversed density profiles in the plateau regime are 
observed after a few collision times. The cause for this long 
time scale behavior will be investigated in the future work.

As the collision frequency increases further to the col
lisional regime ( 1ν >∗ ), the perpendicular transport becomes 
stronger. The balance between the perpendicular and parallel 
transport then leads to a finite density gradient in the island 
center [32]. The electron density gradients now increase with 
the collisionality at both the high field and low field sides, as 
shown in figure 6. This mechanism is further illustrated by the 
collision frequency dependence of the electron particle fluxes 
in figure 7. As the collision frequency increases, the magnetic 
islands induce a steady radial transport much larger than the 
neoclassical level in the absence of the islands.

In the banana regime, the bootstrap current level is almost 
unchanged by the magnetic islands as shown in figure 8. The 
radial profiles of the bootstrap current are averaged over the 
unperturbed flux surface and over 40 times slices with a dura-
tion of about 3 R0/cs in simulation time. The trapped particle 
orbits are mostly unperturbed by the collision, and therefore 
they do not follow the whole field lines around the islands. 
This effect results in a finite density gradient of the trapped 
particles, and therefore a finite bootstrap current level inside 
the islands even though the passing electron density profile is 
flattened. In the plateau and collisional regimes, the trapped 

electron orbits are mostly destroyed by collisions. The trapped 
electron density gradient reduction then leads to a sharp 
decrease of the bootstrap current inside the magnetic island. 
At the same time, the steepening of local pressure gradients 
outside the islands induces a larger bootstrap current at the 
vicinity of the islands. At a very high collisionality, the boot-
strap current diminishes even though the large radial transport 
maintains strong density gradients inside the islands.

The dependence of the island center bootstrap current jbis 
on the collision frequency is shown in figure  9, where the 
bootstrap current in the island center is averaged over 5 iρ  in 
the radial direction, and normalized by the bootstrap current 
jb at the same radial location in the simulations without magn
etic islands. We can see that the bootstrap current at the island 
center is unaffected by the islands in the banana regime and 
fully suppressed by the islands in the plateau regime. There 
are small but finite bootstrap current in the collisional regime.

5.  Conclusions

In this work we demonstrate that the electron bootstrap cur
rent suppression by the magnetic islands can be sensitive to 
the collision frequency in the toroidal plasmas. Drift kinetic 
electron simulation results show that in the banana regime, 
finite electron density gradients could exist in the islands at 
the low field side due to toroidally trapped electrons, and 
the bootstrap current level is only slightly perturbed by the 
magnetic islands. In the plateau regime, electron density pro-
files are flattened at both the high field side and the low field 
side, and the bootstrap current is completely suppressed at 
the island center. In the collisional regime, a small but finite 
bootstrap current can exist inside the islands because of the 
pressure gradients created by the large collisional transport 
across the islands. Near the separatrices, the island-induced 
transport results in steeper local density gradients, which lead 
to a larger local bootstrap current.

Electron temperature gradients also contribute to the boot-
strap current. The temperature flattening by the islands [33] 
will thus affects the bootstrap current profile through the same 
physics as the density flattening. Therefore, similar boot-
strap current response to the islands can be expected. The 
ion contribution to the bootstrap current, which is not studied 
in the present work, could be subjected to the same physics. 
These results highlight the importance of including accurate 
trapped electron effects when studying the NTM dynamics. 
The conventional NTM theory using the reduced bootstrap 
current model probably predicts a larger effect of the islands 
on the bootstrap current, and thus a lower threshold of the 
seed island width. Our results also indicate that trapped elec-
tron modes can be less affected by the islands because of the 
trapped electron effects.

In the future work, we will focus on the first-principle 
simulations with magnetic islands, neoclassical transport, and 
self-consistent electric fields. The island rotation can have sig-
nificant effects on the pressure flattening and the tearing mode 
dynamic when coupled with microturbulence. Therefore, 
incorporating the island rotation together with self-consistent 

Figure 9.  Collision frequency dependence of island center 
bootstrap current jbis.
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electric fields is an important next step work. Microturbulence 
plays an important role as the transport mechanism [34], and 
could affect the bootstrap current level inside the islands. On 
the other hand, the islands could also suppress the turbulence 
and modify the turbulence spectrum. We would then be able 
to study the NTM physics with coupled dynamics of magnetic 
islands, microturbulence, neoclassical transport, and energetic 
particle effects [35].
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