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Nonlinear fluid closure: Three-mode slab ion temperature gradient
problem with diffusion
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The three-mode slab ion temperature gradient problem was considered. Starting from the drift
kinetic equation with nonlinear term and diffusion, the hierarchy of fluid equations up to fourth
moment was developed. As a closure, the nonlinear fluid closure by N. Mattor and S. Parker@Phys.
Rev. Lett.79, 3419~1997!# was applied. Numerical solutions of the system of fluid equations have
been obtained and analyzed. The time evolution of electrostatic potential shows that nonlinear fluid
closure is able to capture particle trapping, which is important for fusion plasmas. Great attention
was paid to studies of the role of diffusion. Diffusion here represents effects of background
turbulence and can be described by a Fokker–Planck operator@A. Zagorodny and J. Weiland, Phys.
Plasmas6, 2359~1999!#. The three wave system can be considered as a system of test waves in a
turbulent background. This system can be used to study situations of varying partial coherence.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1459710#
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I. INTRODUCTION

In Ref. 1 Mattor and Parker proposed a nonlinear flu
closure for the description of three-wave interaction of d
waves. The main reason for their work was the differe
results obtained by different fluid closures in Cyclone wor2

The key point of the developed approach is to find the form
nonlinear solution of the appropriate kinetic equation~for the
given number of interacting modes! and then to establish th
relations between the fluid quantities and the higher m
ments using the obtained formal solution. In Ref. 1 the s
cific calculations were performed on the basis of the dr
kinetic equation in the collisionless approximation, i.
disregarding the influence of stochastic turbulent fields
particle trajectories. Obviously, this approximation is
longer valid for the case of well-pronounced turbulence~see,
Ref. 3!, which produces diffusion in the real and veloci
spaces.3,4 In some cases, such diffusion can be time-nonlo
~non-Markovian!.4,5 So, the questions arise, what is the i
fluence of turbulent diffusion on the resonant interaction
drift waves and what are the main consequences of s
influence? The purpose of the present contribution is to
tend the fluid closure proposed in Ref. 1 to the description
the three-mode ion temperature gradient~ITG! problem in
the presence of turbulent diffusion produced by the stoch
tic turbulent fields. In order to simplify the problem as mu
as possible we restrict ourselves to the case of ordinary~Mar-
kovian! diffusion in real space.

II. DERIVATION OF FLUID HIERARCHY

We begin with the drift kinetic equation with Fokker
Planck operator on right-hand side, describing the evolu
of plasma in a strong magnetic field~see, e.g., Ref. 5!,
1211070-664X/2002/9(4)/1217/4/$19.00
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where f (x,v i ,t) is the one-particle distribution function o
ions, vi is the kinetic velocity parallel to the magnetic fie
B, vE is theEÃB velocity, Ei is the electric field parallel to
B, X is the set of phase variables$r ,v%, Di j is the diffusion
coefficient, andb i is the viscosity.

The equilibrium has a straight constant magnetic fi
B5Bẑ and a Maxwellian distribution of ions with densit
and temperature gradients inx̂,

F0~x,v i!5n0~2pcs
2/t!21/2exp@2tv i

2/2cs
2#,

where cs
25Te /mi , t5Te /T0 , T0 and Te are the ion and

electron temperatures, respectively.
The total one-particle distribution function of ions tak

a form

f ~x,v i ,t !5F0~x,v i!1 f̃ ~x,v i ,t !.

We also assume quasineutrality, electrostatic fieldE
52“f̃, and isothermal electrons~Boltzmann response!
f̃(x,t)Te /e5ñ(x,t)/n0 . We restrict ourselves by conside
ing only diffusion and viscosity in real space in the directi
perpendicular to the magnetic field and with constant coe
cients. It was done in order to simplify the problem as mu
as possible, however, collisional dissipation, namely, vel
ity space diffusion, can also be important~see Ref. 6!. As in
Ref. 1, we neglect nonlinear parallel acceleration.

The kinetic equation~1! Fourier–Laplace transformed i
x and t then reduces to
7 © 2002 American Institute of Physics
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2 i ~v1 iDk2kiv i! f̃ k1
1

B (
k8

~ky9kx82kx9ky8!f̃k9 f̃ k8

1 i F tkiv i1v* e2v* eh iS 1

2
2

tv i
2

2cs
2D G F0ñk

n0

52bx

]F0

]x
1

1

2
Dx

]2F0

]x2
, ~2!

where k95k2k8, v* e52kyTe /(eBLn), Ln
215d ln n0 /dx,

LT
215d ln T0 /dx, rs5Te /(eBcs), h i5Ln /LT , and Dk

[ i (bxkx1byky)1(Dxkx
21Dyky

2)/2. We regard Eq.~2! as
exact for the purpose of deriving the hierarchy of fluid equ
tions.

According to Ref. 1 the highest order of velocity in th
kinetic equation defines the order of fluid moment on wh
we should perform nonlinear kinetic closure; in our case
term ]2F0 /]x2 gives us the fourth order ofv i .

We define the dimensionless fluid moments as

ñk5
*dv i f̃ k

n0
,

Ṽik5
*dv iv i f̃ k

n0cs
,

P̃ik5
*dv iv i

2 f̃ k

n0cs
2

, Pi5nTi , ~3!

Q̃ik5
*dv iv i

3 f̃ k

n0cs
3

,

J̃ik5
*dv iv i

4 f̃ k

n0cs
4

.

The corresponding hierarchy of fluid equations is

]ñk

]t
1 ik ic̃Ṽik1 i ñk52Dkñk2bx

rs

Ln
1

Dx

2 F rs

Ln
G2

, ~4!

]Ṽik

]t
1 ik i

c̃

t
@tT̃ik1~11t!ñk#1 c̃(

k8
~ky9kx82kx9ky8!ñk9Ṽik8

52DkṼik , ~5!

]T̃ik

]t
1 ik i

c̃

t
@tQ̃ik2Ṽik#

1 c̃(
k8

~ky9kx82kx9ky8!ñk9T̃ik81 i ñk

h i

t

52DkT̃ik2bx

rs

tLT
1

Dx

2t F rs
2

LT
2

1
rs

2

LnLT
G , ~6!

]Q̃ik

]t
1 ik ic̃@ J̃ik13ñk#1 c̃(

k8
~ky9kx82kx9ky8!ñk9Q̃ik8

52DkQ̃ik , ~7!
-

e
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n0cs
5

1 c̃(
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~ky9kx82kx9ky8!ñk9J̃ik82 i
3c̃

t2 F rs

Ln
1

2rs

LT
G ñk

52DkJ̃ik2
3bx

t2 F rs

Ln
1

2rs

LT
G1

3Dx

2t2 F rs

Ln
1

2rs

LT
G2

. ~8!

Here we introduce the dimensionless parameterc̃
5cs /rsv* e . The time andk vector are normalized by
uv* eu21 and rs

21, respectively. Closure is now needed,
express*dv iv i

5 f̃ k in terms of lower moments.

III. CLOSURE PROCEDURE

We construct the closure term in the same way as d
by Mattor and Parker in Ref. 1. First, we rewrite the kine
equation~2! in matrix form

~Ṽ2v iKi2G! fW5V* ~v i!F0 . ~9!

Here fW is a column vector off̃ k for differentk, Ṽ andKi are
diagonal matrices ofv2 iDk andki , G is a matrix of non-
linear coupling coefficientsGkk8[ irscs(ky9kx82kx9ky8)ñk9 ,
andV* (v i) is the diagonal matrix of

V* kk~v i!5F tkiv i1v* e2v* eh iS 1

2
2

tv i
2

2cs
2D G ñk

1 i
bx

F0

]F0

]x
2 i

Dx

2F0

]2F0

]x2
.

All matrices are diagonal exceptG. Note that the elements o
Ṽ now depend onk, since they include diffusion terms
while in Mattor and Parker’s work they were the same
different k. Inverting the evolution operator gives

fW52~v i2W!21K i
21V* ~v i!F0 . ~10!

ThusW[K i
21@Ṽ2G# is nonlinear phase velocity matrix,

E dv iS 2F t

cs
2G 5

v i
5110F t

cs
2G 4

v i
3215F t

cs
2G 3

v i D fW

52E dv i
V* ~v i!K i

21

v i2W ]v i

5 F0

52]a
5F E dv i

F0

v i2W2aG
a50

V* ~W!K i
21, ~11!

E dv iS F t

cs
2G 4

v i
426F t

cs
2G 3

v i
213F t

cs
2G 2D fW

52E dv i
V* ~v i!K i

21

v i2W ]v i

4 F0

52]a
4F E dv i

F0

v i2W2aG
a50

V* ~W!K i
21. ~12!
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We have applied the identity

]v
m vn

v2W 5~2]a!m
W n

v2a2WU
a50

~m>n!.

Then using the definitions of fluid moments we can expr
the term that we are interested in,

*dv iv i
5fW

n0cs
5

52
Z0

[5]~WAt/2!

Z0
[4]~WAt/2!

At

2S 1

t
JW i2

6

t2
TW i2

3

t3
nW D

1
10

t
QW i2

15

t2
VW i , ~13!

where Z0 is the analytically continued plasma dispersi
function

Z0~z![
1

Ap
E

CL

dx
e2x2

x2z
.

The superscripts@5# and @4# denote derivatives evaluate
with a like in Eqs. ~11! and ~12!. The obtained form of
highest moment~13! emphasizes the fact that it can depe
on all lower moments, while the closure in the third mome
~in Ref. 1! shows only the dependence of two of them. T
main influences of diffusion on the closure procedure app
in the changing of the order of velocity moment on which w
may close hierarchy, and changing the structure of nonlin
phase velocity matrixW by adding a permanent imaginar
part to frequencies.

IV. THREE-MODE ITG SYSTEM

We apply the developed approach for a particular cas
three-mode ITG system with diffusion, specified in the fo
lowing. The equilibrium has a straight tilted magnetic fie
B5B( x̂1Q ŷ). The spectrum is truncated at three mod
with k5(kx ,ky), k5(kx ,2ky), (2kx,0), denoted1, 2 and
0, respectively. The perturbation inf̃ andf̃ are periodic iny,
vanish atx50,Lx , and havekz50 soki5Qky . It gives us
the following important relations:

f̃ 252 f̃ 1* ,

f̃252f̃1* , ~14!

Re~ f̃ 0!5Re~v0!50.

We also takef̃0[0.
According to this specification of the ITG system, w

need to restrict ourselves by considering only diffusion~no
viscosity! and neglecting in fluid equations~4!–~8! terms
produced by]2F0 /]x2. This could be easily proven, since
most cases these terms are of order 1025– 1026.

The kinetic equation~2! for this system in vector form is

2 i ~Ṽ2v iKi! fW2 c̃kS ñ1

2ñ2

D f̃ 052 iV* ~v i!F0 , ~15!

2 i ~v012iD xkx
2! f̃ 02 c̃k~ ñ2 2ñ1! fW50, ~16!
s

t

ar

ar

of

s

where fW is column vector off̃ 6 , andk52kxky . Note, that
here frequencies are normalized byuv* eu, velocity bycs , k

by rs
21 and distribution functions byn0 /cs , Ki has c̃ki on

its diagonal.
Substitutingf̃ 0 from Eq. ~16! into Eq. ~15! gives us the

explicit form of matrixW in Eq. ~10!

W[S w11 w12

w21 w22
D 5S vp1 is0uuu u

u* vp* 2 is0uuu D . ~17!

Here

vp5
v11 i ~Dxkx

21Dyky
2!

kic̃
,

u52
c̃k2

ki~v012iD xkx
2!

,

s05sign@ Im~v012iD xkx
2!#.

Frequencies we define in eikonal fashion,2 iv15] t ln ñ1 ,
and2 iv05] t ln J̃i0.

For handling with the matrix function B̂(W)
[2Z0

[5] (WAt/2)/Z0
[4] (WAt/2) we use an expression

B̂~W!Â5(
j

B̂~wj !AjjW j ,

where $jW j% is the complete set of eigenvectors ofW, such
that WjW j5wjjW j , AW 5( jAjjW j .

There are two eigenvalues ofW,

w65
w111w22

2
6swAS w112w22

2 D 2

1w12w21,

where signsw561 should be chosen from the continui
arguments. Then the1 component of the productB̂AW can be
expressed as

@B̂~W!AW #15
B̂12B̂2

w12w2
Fw112w22

2
A12w12A2G

1
1

2
~B̂12B̂2!A1 ,

where

AW 5S A1

A2
D , B̂6[B̂~w6!.

Now we have everything we need to construct the clos
term ~13!,

*dv iv i
5 f̃ 1

n0cs
5

5At

2
@B̂~W!AW #11

10

t
QW i2

15

t2
VW i , ~18!

here

AW 5
1

t
JW i2

6

t2
TW i2

3

t3
nW .

We have solved the system of fluid equations~4!–~8!
with the closure term of form~18! numerically. The time
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evolution ofñ1 ~i.e., electrostatic potential! is shown in Fig.
1. The bounces arise from resonant ions orbiting in the
tential well of f̃1 ~see Ref. 7! and demonstrate the retainin
of particle trapping by nonlinear fluid closure. The suppre
ing of the trapping amplitude shows that we lose time reve
ibility of the kinetic equation by introducing diffusion.

V. CONCLUSIONS

We have studied a simple three-wave system of the s
type as studied by Mattor and Parker in order to improve
understanding of fluid closures in general, and of the diff
ent results obtained by different fluid closures in the Cyclo
in particular.

The present system is somewhat limited in the sense
the fluid growth rate and the closure are both associated
parallel ion motion and thus tied together. In general,
toroidal drive of the drift wave dominates, while the closu
remains mainly associated with the parallel ion motion.8

The simple Hammett–Perkins closure9 is equivalent to
adding a diffusive heat flux. It was found by Mattor an
Parker to give a saturation level just above the maxima of
oscillations in our system. We have also added diffusion a
way of including interaction with a background turbulence
enters in a way similar to the closure term in the Hamme
Perkins model and makes the system approach an asymp
stationary state for large times.

The system is very similar to that given in Ref. 10 whe
a nonlinearly unstable three wave system was stabilized

FIG. 1. Time evolution ofuñ1u. Herekx5ky50.3, Q50.001,h i53.
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nonlinear frequency shift. For that system, which was m
explicit, the asymptotic level could be given analytically as
function of the coefficients of the nonlinear frequency sh
and the dampings~diffusion terms!.

It is also interesting to note that for the nonlinearly i
stable three-wave system mentioned previously, an im
nary part of the nonlinear frequency shift gave a much m
rapid approach to the asymptotic state, which also appe
to be located at a lower level. This is similar to the nonline
kinetic Cyclone results for the turbulent case.2

We also note that the system without closure~Fig. 2!
also has a very similar behavior. The rather small differen
seems to be due to the close relation between linear gro
and closure mentioned previously.
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FIG. 2. Time evolution ofuñ1u for the system with nonlinear fluid closure
and without closure term.kx5ky50.3, Q50.001,h i53.


