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The three-mode slab ion temperature gradient problem was considered. Starting from the drift
kinetic equation with nonlinear term and diffusion, the hierarchy of fluid equations up to fourth
moment was developed. As a closure, the nonlinear fluid closure by N. Mattor and S. [Pdmj=r

Rev. Lett.79, 3419(1997] was applied. Numerical solutions of the system of fluid equations have
been obtained and analyzed. The time evolution of electrostatic potential shows that nonlinear fluid
closure is able to capture particle trapping, which is important for fusion plasmas. Great attention
was paid to studies of the role of diffusion. Diffusion here represents effects of background
turbulence and can be described by a Fokker—Planck opé¢fat@agorodny and J. Weiland, Phys.
Plasmass, 2359(1999]. The three wave system can be considered as a system of test waves in a
turbulent background. This system can be used to study situations of varying partial coherence.
© 2002 American Institute of Physic§DOI: 10.1063/1.145971]0

I. INTRODUCTION of ef of

In Ref. 1 Mattor and Parker proposed a nonlinear fluiddt
closure for the description of three-wave interaction of drift g 14 of
waves. The main reason for their work was the different =-p5— + __(Dij _>
results obtained by different fluid closures in Cyclone work. IXi 29X 2
The key point of the developed approach is to find the formajyhere f(x,v| ,t) is the one-particle distribution function of
nonlinear solution of the appropriate kinetic equatifor the jons, v; is the kinetic velocity parallel to the magnetic field
given number of interacting modeand then to establish the B, v is theEXB velocity, E; is the electric field parallel to
relations between the fluid quantities and the higher mog, X is the set of phase variablés,v}, D;; is the diffusion
ments using the obtained formal solution. In Ref. 1 the specoefficient, andg; is the viscosity.
cific calculations were performed on the basis of the drift-  The equilibrium has a straight constant magnetic field

kinetic equation in the collisionless approximation, i.e.,g_B and a Maxwellian distribution of ions with density
disregarding the influence of stochastic turbulent fields on

) ; . . . o . and temperature gradientsfm
particle trajectories. Obviously, this approximation is no
longer valid for the case of well-pronounced turbulefses, Fo(X,v) = no(zwc§/ 7~ Yexd — v ﬁ/Zci],
Ref. 3, which produces diffusion in the real and velocity 5 ,
spaces: In some cases, such diffusion can be time-nonlocal?1€ré ¢s=Te/mi, 7=Te/To, To and T are the ion and
(non-Markovian.*® So, the guestions arise, what is the in- electron temperatures', respec.tlvelly. . .
fluence of turbulent diffusion on the resonant interaction of The total one-particle distribution function of ions takes
drift waves and what are the main consequences of such ©0rm
influence? The purpose of the present contribution is Fo ex- f(x0| ,t):Fo(x,v”)+~f(x,vH 1),
tend the fluid closure proposed in Ref. 1 to the description of
the three-mode ion temperature gradiéfltG) problem in  We also assume quasineutrality, electrostatic fieid
the presence of turbulent diffusion produced by the stochas= —V ¢, and isothermal electrongBoltzmann responge
tic turbulent fields. In order to simplify the problem as much ¢(x,t) T./e=n(x,t)/n,. We restrict ourselves by consider-
as possible we restrict ourselves to the case of ordifMay-  ing only diffusion and viscosity in real space in the direction
kovian) diffusion in real space. perpendicular to the magnetic field and with constant coeffi-
cients. It was done in order to simplify the problem as much
as possible, however, collisional dissipation, hamely, veloc-
ity space diffusion, can also be importaeee Ref.  As in

We begin with the drift kinetic equation with Fokker— Ref. 1, we neglect nonlinear parallel acceleration.
Planck operator on right-hand side, describing the evolution  The kinetic equatioiil) Fourier—Laplace transformed in
of plasma in a strong magnetic fie{dee, e.g., Ref.)5 x andt then reduces to

@

II. DERIVATION OF FLUID HIERARCHY
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i ; vd 1 "t ” l?j ~Jd 5?
—i(o+id—kppTit 52 Kk —kiky) deofi e =Tdvpit
k/

gt T s
. 1 FoNi 3¢ 2
+1 k + - —_— -~ " r " pS pS ~
KV ||+ wye w*e77|(2 2c2 ) No +C§ (kyk —kik! )nkaHk, — L LT Nk
IFg 1 _ *Fg 38 2ps] 3D 2ps)?
=—B,—+-D,—, 2 — AT, 2Px|Ps  2Ps x| Ps  2Ps
IBX (9X 2 X (9X2 ( ) - Ak‘]Hk 7-2 Ln+ LT 27-2 L L-l— (8)
"_ ' 1_ ~
whlerek =k—k', o, e=—kT /(eBLn) Ly"=dInno/dX  Here we introduce the dimensionless parameter
Ly =dInTo/dx ps= T2/(eBc2‘S) =L /LT’ and Ay ICS/pSw*e. The time andk vector are normalized by
=1(Buket Byky) + (Dxk+Dyky)/2. We regard Eq(2) as |, =1 and p; 1, respectively. Closure is now needed, to

exact for the purpose of deriving the hierarchy of fluid equa-
tions.

According to Ref. 1 the highest order of velocity in the
kinetic equation defines the order of fluid moment on whichy, ¢ 0SURE PROCEDURE
we should perform nonlinear kinetic closure; in our case the

expressfdv”vH fi in terms of lower moments.

term 92F o/ 9x? gives us the fourth order af| . We construct the closure term in the same way as done
We define the dimensionless fluid moments as by Mattor and Parker in Ref. 1. First, we rewrite the kinetic
- equation(2) in matrix form
- Jdyyfi ~ -
k™ No ' (Q—UHIC”—F)f=Q*(U“)FO. (9)
~ Heref is a column vector of  for differentk, O andK; are
v _Jdojufy diagonal matrices of»—iAy andk, I is a matrix of non-

I ' . . - . ~
MoCs linear coupling coefficientsl" . =ipsCs(kyky —Kkiky) N,
and(, (v|) is the diagonal matrix of

-~ deHU”fk
Pr="—"">—> P1=nT}, ©) 1 wf |

0¥s Qe =] K|+ 0y o= 0y e, 7 2c2) M

S
~ _fdv”vﬁfk
Quk——noca ’ By dFy . Dy #%Fq
: Foox 2R o0

~ d f . .
J“k:lejllll(_ All matrices are diagonal except Note that the elements of

NoCs Q now depend ork, since they include diffusion terms,
while in Mattor and Parker’s work they were the same for

The corresponding hierarchy of fluid equations is ) ) X .
differentk. Inverting the evolution operator gives

an — ~ D 2 _
O-)_tk_‘_lk”CVHk—i_lnk:_Aknk_ﬁx?_l_7)( ?:| , (4) :_(U”_W) ICH 10*(0“)F0 (10)
n n
ThusW=K [Q—F] is nonlinear phase velocity matrix,
NV
== +IkH—[TTHk+(1+T)nk]+CE (KK, = KLk Mo S N P L P LR
duj| =] | o] +10 | ] =18 | vy |f
~ CS CS CS
=—AWV, 5
o © f O, Pkt o
I e e
z?t +IkH_[TQ||k V|||<:| | .
0 —
- e 7 =-3 fdv—v_w_a} QMK (12)
+Ck2 (kgk),(_k;ék;,)nkrrT“k/-f'lnk? a=0
’ 4 3 2
T T T >
D P2 P2 f dv”({—zl Uﬁl—6 - Uﬁ+3 — )f
S S
:_AkTHk BX 27_ |_2+ L LTl7 (6) Cs CS CS
n
__f D Pk~
a’QH ", VA v” U”_W I 0
. |kHc[J”k+3nk]+cZ (Kyk;, = Kik) ) nierQpie -
0

=—(9i[ doyj———| Q, WKL (12)
:—AK’QHK, (7) J UHUH_W_Q/ a=0 H



Phys. Plasmas, Vol. 9, No. 4, April 2002 Nonlinear fluid closure: Three-mode slab . . . 1219

We have applied the identity wheref is column vector off . , and x=2kk,. Note, that
on n here frequencies are normalized [ay, .|, velocity bycs, k
Oy —5=(—0)"———5 (m=n). by ps " and distribution functions by, /cs, K hasck; on
v—W v—a—W| . S
a=0 its diagonal.
Then using the definitions of fluid moments we can express  Substitutingf, from Eq. (16) into Eq. (15) gives us the
the term that we are interested in, explicit form of matrixV in Eq. (10)
fdevﬁF ZBS](W\/T/Z) 1. 6. 3. Wi Wy Up+iSO|u| u
5 S Sl T Zh— 30 W= - * X - a9
NoCa zZW o2y Y2\ 7' 22 T Wa1  Wpp u vp —iso|ul
10 15\7 . Here
TSV a3 0. +1(Dyk2+D k2
l)p: ~ y
where Z, is the analytically continued plasma dispersion kjc
function ~ 5
Ck
2 u=

Zo(0)= dx; . Ki(wo+ 21D (k)

Vmle So=Sigr IM(wo+2iD k2)].
The superscriptg5] and [4] denote derivatives evaluated ) o o ~
with @ like in Egs. (11) and (12). The obtained form of Frequencies we define in eikonal fashieniw, =d;Inn,,
highest moment13) emphasizes the fact that it can dependand —iwo=d;In Jjo. .
on all lower moments, while the closure in the third moment ~ For handling with the matrix function B(W)
(in Ref. 1) shows only the dependence of two of them. The= — 2P (W\/7/2)/1z5 (W\/712) we use an expression
main influences of diffusion on the closure procedure appear A A
in the changing of the order of velocity moment on whichwe ~ B(W)A=Y, B(W))A, éj ,
may close hierarchy, and changing the structure of nonlinear ]
phase velocity matrixV by adding a permanent imaginary

o 1 : where{éj} is the complete set of eigenvectors)af, such
part to frequencies.

There are two eigenvalues oY),

2

Wi~ W
— | TWpWyy,

2

We apply the developed approach for a particular case of . -
three-mode ITG system with diffusion, specified in the foI—Where signs,,=+1 should be chosen from the continuity
lowing. The equilibrium has a straight tilted magnetic field a'9uments. Then the component of the produ@A can be
B=B(X+09). The spectrum is truncated at three modesSXPressed as
with k= (k¢ ,Ky), k= (ky,—ky), (2Ky,0), denoted+, — and R R B,—B_ Wii— Wap
0, respectively. The perturbationfrand ¢ are periodic iry, [BOV)AL = { 5 A+ —leA—}
vanish atx=0,L,, and havek,=0 sok =0k, . It gives us
the following important relations:

IV. THREE-MODE ITG SYSTEM = Nt Wap s, \/

+

- 2

L Wo

1. .
+5(Bi—B)AL,

T ==7*,
~ ~ where
p_=- (f’: , (14 A
~ + ~ ~
Re(fo)=Re(wo) =0. A_(A>’ B2=B(W.)
We also take}&ozo. Now we have everything we need to construct the closure

According to this specification of the ITG system, we term (13),
need to restrict ourselves by considering only diffusian 5
viscosity) and neglecting in fluid equation@)—(8) terms deIIUHf+ _ \ﬁ BOMA +1_0» _53\7
produced byp?F,/ax2. This could be easily proven, since in nc® g [BOMAL+ Q) 2
most cases these terms are of order 010 °.

The kinetic equatiori2) for this system in vector form is here

(18

n. . 1. 6. 3.
—i(Q—v”IC)f—CK( _ )foz—iﬂ*(vao, (15) A=2m STim 50

) ) o~ o~ o~ We have solved the system of fluid equatiod$—(8)
—i(wo+2iDyky)fo—ck(n_ —n,)f=0, (16)  with the closure term of forn{18) numerically. The time
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FIG. 1. Time evolution ofn, |. Herek,=k,=0.3, ©=0.001, 7;=3. FIG. 2. Time evolution ofn. | for the system with nonlinear fluid closure

and without closure ternk,=k,=0.3, ®=0.001, »=3.

evolution ofn . (i.e., electrostatic potentigis shown in Fig.
1. The bounces arise from resonant ions orbiting in the po-

tential well of¢+ (see Ref. Yand demonstrate the retaining
of particle trapping by nonlinear fluid closure. The suppress-
ing of the trapping amplitude shows that we lose time revers-
ibility of the kinetic equation by introducing diffusion.

nonlinear frequency shift. For that system, which was more
explicit, the asymptotic level could be given analytically as a
function of the coefficients of the nonlinear frequency shift
and the damping&iffusion termg.

It is also interesting to note that for the nonlinearly in-
stable three-wave system mentioned previously, an imagi-
nary part of the nonlinear frequency shift gave a much more
V. CONCLUSIONS rapid approach to the asymptotic state, which also appeared

We have studied a simple three-wave system of the sant® be located at a lower level. This is similar to the nonlinear
type as studied by Mattor and Parker in order to improve oukinetic Cyclone results for the turbulent case.
understanding of fluid closures in general, and of the differ- We also note that the system without closuFag. 2
ent results obtained by different fluid closures in the Cyclonealso has a very similar behavior. The rather small difference
in particular. seems to be due to the close relation between linear growth

The present system is somewhat limited in the sense thaind closure mentioned previously.
the fluid growth rate and the closure are both associated with
parallel ion motion and thus tied together. In general, theACKNOWLEDGMENTS
toroidal drive of the drift wave dominates, while the closure  The authorgand, in particular, 1.H.would like to thank
remains mainly associated with the parallel ion mofion. Dr. N. Mattor for help in numerical computations.
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