CTEM Simulation and Transport Dynamics

Yong Xiao, Zhihong Lin
University of California, Irvine

This work is supported by SciDAC Center for Gyrokinetic Particle Simulation for Turbulent Transport in Burning Plasmas
Linear Growth Rate Benchmark

- GTC has the capability to simulate kinetic electrons

1. Rewoldt/Lin/Idomura
 CPC 2007
Outline

- Convergence study
- Heat transport and zonal flow in CTEM
- Features of CTEM turbulences
- CTEM characteristic time scales
- Summary and Future Work
Convergence of CTEM (NC)

The images show graphs with various parameters:
- Ion transport
- Electron transport
- Zonal flow

The graphs are labeled with different time steps and number of cells (NC).

- Top left: $\Delta t = 0.05$, $NC = 20$
- Top right: $\Delta t = 0.05$, $NC = 40$
- Bottom left: $\Delta t = 0.05$, $NC = 100$
- Bottom right: $\Delta t = 0.05$, $NC = 200$
Particle convergence study shows 100 particle per cell is sufficient to simulate CTEM.

Reducing the time step numerically stabilizes the zonal flow.
CTEM/ITG Heat Transport and Zonal Flow

Turbulence transport is strongly correlated with the shearing of zonal flow.

Zonal flow shows a regulation effect in both CTEM and ITG.

\[\omega_s = \frac{L_r}{L_\zeta} \frac{\partial}{\partial r} \left(\frac{q}{r} V_E \right) \]

Hahm POP 95
Zonal Flow Pattern of CTEM

- Zonal flow initially is excited by turbulence in the linear phase, when the spectrum cascades to short wavelength.
- In the nonlinear phase, zonal flow spectrum inversely cascades to long wavelength.
Spectral Cascade of Three Turbulences

CTEM has an inverse perpendicular spectral cascade, and ITG has a normal parallel spectral cascade.
Ballooning Structure and Radial Correlation

CTEM has a smaller ballooning angle than ITG, corresponding a stronger ballooning structure.

CTEM has a shorter radial correlation length.
Wave Propagation and Autocorrelation Time

Wave propagate in electron diamagnetic direction for CTEM, in ion diamagnetic direction for ITG.

Two time---two point correlation can be applied to calculate the autocorrelation time of the turbulence eddy.

\[C_{t\zeta}(\Delta t, \Delta \zeta) = \frac{\langle \phi(t + \Delta t, \zeta + \Delta \zeta) \phi(t, \zeta) \rangle}{\sqrt{\langle \phi^2(t + \Delta t, \zeta + \Delta \zeta) \rangle \langle \phi^2(t, \zeta) \rangle}} \]
Nonlinear Transport Mechanism

- Effective wave-particle decorrelation time

\[\tau_{wp} = \frac{2D}{\left\langle \delta V_r^2 \right\rangle} \rightarrow \frac{4}{3} \frac{\chi_e}{\left\langle \delta V_r^2 \right\rangle} \]
The similarity between the radial profile of heat transport and EXB velocity intensity in ITG indicated a quasi-linear theory may be sufficient to model ITG turbulence.

Modeling CTEM seems more difficult.
Other Characteristic Time Scales

- Parallel decorrelation time
 \[\tau_{||} = \frac{1}{\Delta k_{\parallel} v_i} \]

- Diffusion time across mode rational surface
 \[\tau_{\text{eddy}} = \frac{L_r}{\delta V_r} \]

- Diffusion time across radial streamer
 \[\tau_{\perp} = \frac{3}{4s^2\theta^2k^2\chi_e} \]

- Eddy turn over time
 \[\tau_{rb} = \frac{3L^2_r}{4\chi_e} \]

- Turbulence autocorrelation time
 \[\tau_{au} \]
Characterize Turbulence Spectrum

| \(\frac{L_{\perp}}{v_{\parallel}} \) | \(\tau_{wp} = \frac{4x}{3\Delta v_{\parallel}} \) | \(\tau_{||} = \frac{1}{\Delta k_{||}} \frac{1}{v_{\parallel}} \) | \(\tau_{f} \) | \(\tau_{edd} \) | \(\tau_{rh} \) | \(\tau_{nn} \) | \(\tau_{s} \) | \(\frac{1}{\gamma} \) |
|-----------------|-----------------|-----------------|----------|----------|----------|----------|----------|----------|
| ETG 500 | 1.3 | 1.7 | 2.5 | 13.4 | 139 | 110 | | 11 |
| ITG(A) 500 | 1.7 | 1.8 | 2.0 | 4.9 | 21 | 7.2 | | 9.1 |
| ITG(A) 250 | 1.6 | 1.7 | 2.2 | 4.9 | 23 | 15 | 1.4 | 9.1 |
| ITG(k) 250\(i \) | 1.6 | 1.8 | 1.64 | 3.6 | 12.6 | 6.6 | 0.87 | 5.0 |
| ITG(k)_250\(e \) | 0.7 | 8.8 | 67 | 5.0 | 5.0 | | | |
| CTEM 250\(i \) | 0.26 | 1.91 | 7.7 | 1.82 | 19.3 | 9.27 | 0.65 | 4.0 |
| CTEM 250\(e \) | 0.61 | 7.8 | 19.6 | 4.0 | | | | |
| CTEM_125\(i \) | 0.25 | 1.96 | 13.0 | 1.96 | 29.7 | 13.7 | 0.98 | 4.0 |
| CTEM_125\(e \) | 0.61 | 13.8 | 31.6 | 4.0 | | | | |
| CTEM_62.5\(i \) | 0.17 | 1.90 | 4.43 | 4.89 | 44.8 | 22.5 | 0.95 | 4.0 |
| CTEM_62.5\(e \) | 0.33 | 5.33 | 54.0 | 4.0 | | | | |

- ETG/ITG(A), fluid time scales are quite separate from kinetic scales. Parallel wave-particle decorrelation is the main transport mechanism for thermal transport in ITG(A) and ETG, which provides a basis for the validity of quasilinear description of these turbulences.

- Kinetic time scale are mixed with fluid time scale, which will make TEM turbulence more difficult to model.

- Nonlinear transport mechanism of TEM is still under investigation Lin et al PRL 2007
Summary and Future Work

- Short wavelength CTEM mode could drive electron heat transport comparable ion heat transport (ITB physics)

- In the nonlinear phase CTEM cascade normally to long wavelength range.

- Current studies show that the shearing of zonal flow has a strong correlation with heat transport, which may suggest the regulation effect of zonal flow.

- Characterization of CTEM turbulence shows that the nonlinear heat transport may be closely related the shearing of the zonal flow.

- Future work includes

 - Further study the nonlinear heat transport and turbulence saturation of CTEM: zonal flow physics and precession resonance detuning

 - CTEM parameter scanning -> CTEM modeling -> predictive power
Convergence Study of ITG(K)

- Increase NC → increase velocity space resolution → more clear GAM oscillation
- Heat transport not influenced by the fine velocity space structure
- Zonal flow becomes more numerically stable by reducing the time step